THE POTENTIAL OF VEGETATION DENSITY, VEGETATION HEALTH, CHLOROPHYLL, AND NITROGEN ON THE SURVIVAL OF BEKANTAN (CASE STUDY: BAKUT ISLAND, ANJIR MUARA DISTRICT, BARITO KUALA REGENCY, SOUTH KALIMANTAN PROVINCE)

Authors

  • Ezer Ayusalin Nazara Universitas Lambung Mangkurat Author
  • Elza Nadia Puspita Universitas Lambung Mangkurat Author
  • Nevy Farista Aristin Universitas Lambung Mangkurat Author
  • Muhammad Muhaimin Universitas Lambung Mangkurat Author

DOI:

https://doi.org/10.20527/wwba6a70

Keywords:

Vegetation Density, Vegetation Health, Chlorophyll, Nitrogen, Bekantan

Abstract

Ecosystem imbalance results in the disruption of the bekantans survival as one of the endemic animals in Kalimantan. Bakut Island has become one of the natural tourist parks that serves as a place to protect and preserve the bekantan’s survival. bekantans will be protected when their environmental potential is sufficient and capable of providing their food needs, a habitat for their dwelling, and avoiding wild hunting. The purpose of this research is to assess the potential vegetation density, vegetation health, chlorophyll content, and nitrogen content on Bakut Island as a supporter of the bekantan's ecosystem. The research method involves calculating vegetation density index, vegetation health, chlorophyll, and nitrogen using the NDVI, NDRE, CI Green, and NDNI formulas. The research results showed a vegetation density index of 0,4 (very high), vegetation health of 0,32 (very high), chlorophyll content of 1,23 (very high), and nitrogen content of 0,11 (very high). Bakut Island has very high potential as a supporter of the bekantan's ecosystem for sustainability and survival. This is because Bakut Island's ecosystem has an abundance of food, good vegetation health, and a supportive habitat for reproduction. Therefore, this research implies a guideline for maintaining vegetation and habitat consistency to preserve the survival of Bekantans as endemic animals in Kalimantan.

Downloads

Download data is not yet available.

References

Boiarskii, B., & Hasegawa, H. (2019). Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. Journal of Mechanics Of Continua and Mathematical Sciences, 4, 20–29. https://doi.org/10.26782/jmcms.spl.4/2019.11.00003

Debnath, P., Ahmad, S. K., Mahedi, R. A., Ganguly, A., & Sarker, K. K. (2022). Bioactive Compounds and Functional Properties of Rambai (Baccaurea Motleyana Müll. Arg.) Fruit: A Comprehensive Review. Food Science & Nutrition, 10(1), 218–226. https://doi.org/doi.org/10.1002/fsn3.2661

Fang, H., & Liang, S. (2008). Leaf Area Index Models. Encyclopedia of Ecology, 2139–2148. https://doi.org/10.1016%2FB978-008045405-4.00190-7

Hernandez-Clemente, R., Hornero, A., Mottus, M., Penuelas, J., Gonzalez-Dugo, V., Jimenez, J., Suarez, L., Alonso, L., & Zarco-Tejada, P. (2019). Early Diagnosis of Vegetation Health from High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned From Empirical. Current Forestry Reports, 5, 169–183. https://doi.org/10.1007/s40725-019-00096-1

Ji, M., & Wang, J. (2021). Review and Comparison of Various Hydrogen Production Methods Based on Costs and Life Cycle Impact Assessment Indicators. International Journal of Hydrogen Energy, 46(78), 38612–38635. https://doi.org/10.1016/j.ijhydene.2021.09.142

Kim, S., Baglan, N., & Davis, P. (2013). Current Understanding of Organically Bound Tritium (OBT) in the Environment. Journal of Environmental Radioactivity, 126, 83–91. https://doi.org/10.1016/j.jenvrad.2013.07.011

Kundu, A., Denis, D., Patel, N., & Dutta, D. (2018). A Geo‐Spatial Study for Analysing Temporal Responses of NDVI to Rainfall. Singapore Journal of Tropical Geography, 39(1), 107–116. https://doi.org/10.1016/j.jenvrad.2013.07.011

Kusmita, L., & Limantara, L. (2009). The Influence of Strong and Weak Acid Upon Aggregation and Pheophytinization of Chlorophyll A and B. Indonesian Journal of Chemistry, 9(1), 70–76. https://doi.org/doi.org/10.22146/ijc.21564

Latifa, R., Hadi, S., & Nurrohman, E. (2019). The Exploration of Chlorophyll Content of Various Plants in City Forest of Malabar Malang. BIOEDUKASI, 17(2), 50–62. https://doi.org/10.19184/bioedu.v17i2.14091

Lehnert, N., Dong, H., Harland, J., Hunt, A., & White, C. (2018). Reversing Nitrogen Fixation. Nature Reviews Chemistry, 2(10), 278–289. https://doi.org/10.1038/s41570-018-0041-7

Liang, L., Di, L., Huang, T., Wang, J., Lin, L., Wang, L., & Yang, M. (2018). Estimation of Leaf Nitrogen Content in Wheat Using New Hyperspectral Indices and a Random Forest Regression Algorithm. Remote Sensing, 10(12), 1–16. https://doi.org/10.3390/rs10121940

Nurliani, A., Rezeki, A., Istiqomah, S., & Hoesain, F. (2022). Daily Behavioral Activities of the Proboscis Monkey (Nasalis Larvatus Wurmb) in the Bekantan Rescue Center, Sahabat Bekantan Indonesia Foundation. IOP Conference Series: Earth and Environmental Science, 976. https://doi.org/10.1088/1755-1315/976/1/012013

Pasimeni, M., Valente, D., Semeraro, T., Petrosillo, I., & Zurlini, G. (2019). Anthropogenic Landscapes. Encyclopedia of Ecology, 4, 472–481. https://doi.org/10.1016/B978-0-12-409548-9.10602-5

Stevens, C. (2019). Nitrogen in the Environment. Science, 363(6427), 578–580. https://doi.org/10.1126/science.aav8215

Toulec, T., Lhota, S., Scott, K., Putera, A., Kustiawan, W., & Nijman, V. (2022). A Decade of Proboscis Monkey (Nasalis Larvatus) Population Monitoring in Balikpapan Bay: Confronting Predictions with Empirical Data. American Journal of Primatology, 84(2), 23–35. https://doi.org/10.1002/ajp.23357

Toulec, T., Lhota, S., Soumarova, H., Putera, A., & Kustiawan, W. (2020). Shrimp Farms, Fire or Palm Oil? Changing Causes of Proboscis Monkey Habitat Loss. Global Ecology and Conservation, 21, 1–12. https://doi.org/10.1016/j.gecco.2019.e00863

Verma, A. (2018). Ecological Balance: An Indispensable Need for Human Survival. Journal of Experimental Zoology, 21(1), 407–409. https://doi.org/10.1126/science.aav8215

Verma, A. (2019). Sustainable Development and Environmental Ethics. International Journal on Environmental Sciences, 10(1), 1–5. https://doi.org/10.1126/science.aav8215

Wardatutthoyyibah, W., Pudyatmoko, S., Subrata, S., & Imron, M. (2019). The Sufficiency of Existed Protected Areas in Conserving the Habitat of Proboscis Monkey (Nasalis Larvatus). Biodiversitas Journal of Biological Diversity, 20(1), 1–10. https://doi.org/10.13057/biodiv/d020101

Xie, Q., Dash, J., Huang, W., Peng, D., Qin, Q., Mortimer, H., & Ye, H. (2018). Vegetation Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1482–1493. https://doi.org/ttps://doi.org/10.1109/JSTARS.2018.2813281

Zainudin, Z., & Rezeki, A. (2016). Population Structure of Proboscis Monkey (Nasalis larvatus) Curiak Island, Barito Kuala Regency, South Kalimantan. Proceedings of Symbion (Symposium on Biology Education), Biology Education Study Program, FKIP, Ahmad Dahlan University, 1–9.

Downloads

Published

2024-05-03

How to Cite

THE POTENTIAL OF VEGETATION DENSITY, VEGETATION HEALTH, CHLOROPHYLL, AND NITROGEN ON THE SURVIVAL OF BEKANTAN (CASE STUDY: BAKUT ISLAND, ANJIR MUARA DISTRICT, BARITO KUALA REGENCY, SOUTH KALIMANTAN PROVINCE) (E. A. Nazara, E. N. Puspita, N. F. Aristin, & M. Muhaimin , Trans.). (2024). International Conference On Social Science Education Proceeding, 1, 95-106. https://doi.org/10.20527/wwba6a70